We reported previously that treatment of the pig kidney proximal tubular epithelial cell line LLC-PK(1) with cephaloridine (CLD) decreased the activity of cytochrome c oxidase in the mitochondria of the cells followed by increases in lipid peroxidation and cell necrosis. In this study, we investigated the effects of CLD on the activity of cytochrome c oxidase in mitochondria isolated from LLC-PK(1) cells and purified the enzyme from mitochondria of the rat renal cortex. The activity of cytochrome c oxidase in the isolated mitochondria from LLC-PK(1) cells was significantly decreased from 1 h after addition of 1 mM CLD.
View Article and Find Full Text PDFTo clarify the role of neurotrophin receptors in the development of Ruffini endings, periodontal ligaments and trigeminal ganglia of trkA, trkB, and trkC knockout mice were immunostained for protein gene product 9.5 (PGP 9.5), calcitonin gene-related peptide (CGRP), parvalbumin (PV), and calretinin (CR).
View Article and Find Full Text PDF4'-O-tetrahydropyranyladriamycin (THP) showed an approximately 10-fold greater inhibitory effect on DNA synthesis in L1210 mouse leukemia cells than adriamycin (ADM). The intracellular transfer rate and nuclear accumulation of THP were approximately 5-fold higher than those of ADM. The intensity of in vitro inhibition of topoisomerase II activity by ADM was almost the same as that by THP.
View Article and Find Full Text PDFTo elucidate the involvement of proteasome inhibition in apoptosis induced by anthracycline anticancer agents, we investigated the interaction between the proteasome and anthracycline anticancer agents, and the function of the proteasome in apoptosis. Exposure of L1210 mouse lymphocytic leukemia cells to adriamycin (ADM) or 4'-O-tetrahydropyranyladriamycin (THP) resulted in apoptosis in a dose-dependent manner: 5 microM ADM and 0.5 microM THP induced apoptosis efficiently, but the effects of 10 microM ADM and 5 microM THP were markedly decreased or completely absent.
View Article and Find Full Text PDFAdriamycin (ADM), an anthracycline anticancer agent, is selectively stored in the nuclei of a variety of proliferating cells, but the precise mechanism of specific nuclear transport of ADM is not well known. Recently, we demonstrated that ADM shows high binding affinity to the cytoplasmic proteasomes of L1210 mouse leukemia cells and that taken up ADM by the cells selectively binds to proteasomes. Nuclear targeting of proteasome in proliferating cells may be mediated by the nuclear localization signals that are found in several of the alpha-type subunits of the 20S proteasome.
View Article and Find Full Text PDF