Turkiye Parazitol Derg
January 2025
Objective: This study retrospectively evaluates our laboratory immunoglobulin (Ig)M, IgG antibody and avidity test results to determine the distribution of the pathogen according to sex, age, clinics and years.
Methods: The serum samples sent to Pamukkale University Healthcare Research and Practice Hospital's Medical Microbiology laboratory between January 2016 and December 2023 were evaluated for seropositivity. antibodies and avidity testing were studied using chemiluminescent microparticle immunological testing method (Abbott Architect i2000SR, Weisbaden, Germany).
Aim: This study intended to compare the radiation dose estimates to target and nontarget liver compartments from 99mTc-MAA SPECT/CT and 90Y-PET/MR scans in liver tumors treated by 90Y-glass microspheres.
Material And Methods: Dose estimation was performed for twenty-three eligible patients (13M, 10F) after 99mTc-MAA simulation using SPECT/CT imaging, and over 90Y-PET/MR images after 90Y-microsphere therapy. Simplicit90Y™ software was used for voxel-based dosimetry over the liver parenchyma.
Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.
Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.
The consequences of climate change, accelerated by anthropogenic activities, have different effects on different ecosystems, and the severity of these effects is predicted to increase in the near future. The number of studies investigating how forest ecosystems respond to these changes is increasing. However, there remains a significant gap in research concerning how saproxylic organisms-one of the key contributors to the healthy functioning of these fragile ecosystems-will respond to the consequences of climate change.
View Article and Find Full Text PDFLi-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated.
View Article and Find Full Text PDF