Proc Natl Acad Sci U S A
March 2014
In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component.
View Article and Find Full Text PDFA superfluid in the absence of a viscous normal component should be the best realization of an ideal inviscid Euler fluid. As expressed by d'Alembert's famous paradox, an ideal fluid does not drag on bodies past which it flows, or in other words it does not exchange momentum with them. In addition, the flow of an ideal fluid does not dissipate kinetic energy.
View Article and Find Full Text PDFLong-lived coherent spin precession of (3)He-B at low temperatures around 0.2T(c) is a manifestation of Bose-Einstein condensation of spin-wave excitations or magnons in a magnetic trap which is formed by the order-parameter texture and can be manipulated experimentally. When the number of magnons increases, the orbital texture reorients under the influence of the spin-orbit interaction and the profile of the trap gradually changes from harmonic to a square well, with walls almost impenetrable to magnons.
View Article and Find Full Text PDFSteady-state turbulent motion is created in superfluid (3)He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of (3)He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2T(c) during the front motion, which is monitored using NMR techniques.
View Article and Find Full Text PDFA central question in the dynamics of vortex lines in superfluids is dissipation on approaching the zero temperature limit T→0. From both NMR measurements and vortex filament calculations, we find that vortex flow remains laminar up to large Reynolds numbers Re{α}∼10(3) in a cylinder filled with 3He-B. This is different from viscous fluids and superfluid 4He, where the corresponding responses are turbulent.
View Article and Find Full Text PDF