Publications by authors named "M Kozina"

Light-matter interaction at the nanoscale in magnetic alloys and heterostructures is a topic of intense research in view of potential applications in high-density magnetic recording. While the element-specific dynamics of electron spins is directly accessible to resonant x-ray pulses with femtosecond time structure, the possible element-specific atomic motion remains largely unexplored. We use ultrafast electron diffraction (UED) to probe the temporal evolution of lattice Bragg peaks of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse.

View Article and Find Full Text PDF

Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods.

View Article and Find Full Text PDF
Article Synopsis
  • - The study demonstrates ultrafast electron diffraction (UED) techniques that utilize THz-driven bunch compression, enhancing temporal resolution for probing materials.
  • - A compression factor of about four is achieved, while time-of-arrival jitter with a pump laser is reduced by a factor of three, improving measurement accuracy.
  • - This advanced method is applied to single-crystal gold nanofilms, successfully capturing transient oscillations in THz near fields with a temporal resolution of 50 femtoseconds, which were not observable before.
View Article and Find Full Text PDF

Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr.

View Article and Find Full Text PDF

Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials. One seminal example is the Einstein-de Haas effect in ferromagnets, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive.

View Article and Find Full Text PDF