Publications by authors named "M Koudelka-Hep"

Brain-implantable microprobe arrays, 6.5 mm shaft-length, incorporating several recessed Pt microelectrodes (50 μm×150 μm) and an integrated Ag/AgCl reference electrode fabricated by silicon micromachining dry etching techniques (DRIE) are described. The microelectrodes are coated by an enzyme membrane and a semi-permeable m-phenylenediamine layer for the selective detection of the neurotransmitters choline and L-glutamate at physiologically relevant concentrations.

View Article and Find Full Text PDF

This article presents the design and fabrication of a microfluidic biosensor cartridge for the continuous and simultaneous measurement of biologically relevant analytes in a sample solution. The biosensor principle is based on the amperometric detection of hydrogen peroxide using enzyme-modified electrodes. The low-integrated and disposable cartridge is fabricated in PDMS and SU-8 by rapid prototyping.

View Article and Find Full Text PDF

This paper presents a chip-based electrophysiological platform enabling the study of micro- and macro-circuitry in in-vitro neuronal preparations. The approach is based on a 64x64 microelectrode array device providing extracellular electrophysiological activity recordings with high spatial (21 microm of electrode separation) and temporal resolution (from 0.13 ms for 4096 microelectrodes down to 8 micros for 64 microelectrodes).

View Article and Find Full Text PDF

High-density microelectrode arrays (MEAs) enabled by recent developments of microelectronic circuits (CMOS-MEA) and providing spatial resolutions down to the cellular level open the perspective to access simultaneously local and overall neuronal network activities expressed by in vitro preparations. The short inter-electrode separation results in a gain of information on the micro-circuit neuronal dynamics and signal propagation, but requires the careful evaluation of the time resolution as well as the assessment of possible cross-talk artifacts. In this respect, we have realized and tested Pt high-density (HD)-MEAs featuring four local areas with 10microm inter-electrode spacing and providing a suitable noise level for the assessment of the high-density approach.

View Article and Find Full Text PDF

A platform for high spatial and temporal resolution electrophysiological recordings of in vitro electrogenic cell cultures handling 4096 electrodes at a full frame rate of 8 kHz is presented and validated by means of cardiomyocyte cultures. Based on an active pixel sensor device implementing an array of metallic electrodes, the system provides acquisitions at spatial resolutions of 42 microm on an active area of 2.67 mm x 2.

View Article and Find Full Text PDF