Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy.
View Article and Find Full Text PDFPhotochem Photobiol Sci
February 2024
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant treatment with such lipids using the prototype molecule edelfosine.
View Article and Find Full Text PDFTherapeutic cancer vaccines have become firmly established as a reliable and proficient form of tumor immunotherapy. They represent a promising approach for substantial advancements in the successful treatment of malignant diseases. One attractive vaccine strategy is using, as the vaccine material, the whole tumor cells treated ex vivo by rapid tumor ablation therapies that instigate stress signaling responses culminating in immunogenic cell death (ICD).
View Article and Find Full Text PDFRecently, it has become clear that a prerequisite requirement for most cancer therapies is controlling the negative impact of the activity of immunosuppressory cell populations. It is therefore of a considerable interest to develop treatments for containing the operation of major myeloid and lymphoid immunoregulatory cell populations. We have reported that acid ceramidase inhibitor LCL521 effectively overrides the activity of immunoregulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) engaged in the context of tumor response to photodynamic therapy (PDT).
View Article and Find Full Text PDF