Front Cell Infect Microbiol
May 2024
The genus , which colonizes mucosal surfaces, includes both commensal and pathogenic species that are exclusive to humans. The two pathogenic species are closely related but cause quite different diseases, meningococcal sepsis and meningitis () and sexually transmitted gonorrhea ). Although obvious differences in bacterial niches and mechanisms for transmission exists, pathogenic have high levels of conservation at the levels of nucleotide sequences, gene content and synteny.
View Article and Find Full Text PDFProtein glycosylation is increasingly recognized as a common protein modification across bacterial species. Within the Neisseria genus O-linked protein glycosylation is conserved yet closely related Neisseria species express O-oligosaccharyltransferases (PglOs) with distinct targeting activities. Within this work, we explore the targeting capacity of different PglOs using Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) fractionation and Data-Independent Acquisition (DIA) to allow the characterization of the impact of changes in glycosylation on the proteome of Neisseria gonorrhoeae.
View Article and Find Full Text PDFBackground: Typing of Neisseria gonorrhoeae is necessary for epidemiologic surveillance, while time consuming and resource intensive. Fourier transform infrared (FTIR) spectroscopy has shown promising results when typing several bacterial species. This study investigates whether FTIR spectroscopy can be used as a rapid method for typing clinical N.
View Article and Find Full Text PDFProtein glycosylation systems are widely recognized in bacteria, including members of the genus . In most bacterial species, the molecular mechanisms and evolutionary contexts underpinning target protein selection and the glycan repertoire remain poorly understood. Broad-spectrum -linked protein glycosylation occurs in all human-associated species groups within the genus , but knowledge of their individual glycoprotein repertoires is limited.
View Article and Find Full Text PDFThe opportunistic pathogen Pseudomonas aeruginosa relies upon type IV pili (Tfp) for host colonization and virulence. Tfp are retractile surface appendages that promote adherence to host tissue and mediate twitching motility, a form of surface-associated translocation. Tfp are composed of a major structural pilin protein (PilA), several less abundant, fiber-associated pilin-like proteins (FimU, PilV, PilW, PilX, and PilE), and a pilus-associated tip adhesin and surface sensor (PilY1).
View Article and Find Full Text PDF