We study the average and the standard deviation of the entanglement entropy of highly excited eigenstates of the integrable interacting spin-1/2 XYZ chain away from and at special lines with U(1) symmetry and supersymmetry. We universally find that the average eigenstate entanglement entropy exhibits a volume-law coefficient that is smaller than that of quantum-chaotic interacting models. At the supersymmetric point, we resolve the effect that degeneracies have on the computed averages.
View Article and Find Full Text PDFTo which degree the average entanglement entropy of midspectrum eigenstates of quantum-chaotic interacting Hamiltonians agrees with that of random pure states is a question that has attracted considerable attention in the recent years. While there is substantial evidence that the leading (volume-law) terms are identical, which and how subleading terms differ between them is less clear. Here we carry out state-of-the-art full exact diagonalization calculations of clean spin-1/2 XYZ and XXZ chains with integrability breaking terms to address this question in the absence and presence of U(1) symmetry, respectively.
View Article and Find Full Text PDF