Publications by authors named "M Klannemark"

Increased production of reactive oxygen species (ROS) has been suggested as a cause of diabetic complications. Uncoupling proteins (UCPs) have been ascribed a role in reducing the formation of ROS, and genetic variation in genes encoding for UCPs could thus be putative candidate genes for diabetic nephropathy. To test this hypothesis we searched for association between the A-->G (-3862) variant in UCP1, the insertion/deletion (I/D) polymorphism in exon 8 in UCP2, and the C-->T (-55) polymorphism in UCP3 and diabetic nephropathy in 218 diabetic patients with normal urinary albumin excretion rate (AER), 216 with micro- or macroalbuminuria, and in 106 control subjects without a family history of diabetes.

View Article and Find Full Text PDF

Objective: Mutations in the pro-opiomelanocortin and melanocortin 4 receptor genes (POMC and MC4R) cause monogenic obesity, and the POMC locus (2p21) has been linked to leptin levels and body mass index (BMI). We searched for monogenic obesity due to mutations in POMC and MC4R among morbidly obese Swedes and studied the association of POMC variants with BMI and serum leptin levels.

Design: MC4R and POMC were screened for mutations in 102 obese Swedish subjects (40+/-11 y, 41.

View Article and Find Full Text PDF

The human transcription factor FOXC2 has recently been shown to protect against diet-induced insulin resistance in transgenic mice. We investigated the expression of FOXC2 in fat and muscle and performed a genetic analysis in human subjects. FOXC2 mRNA levels were increased in visceral compared with subcutaneous fat from obese subjects (12 +/- 4-fold; P = 0.

View Article and Find Full Text PDF

The calpain-10 gene (CAPN10) has been associated with type 2 diabetes, but information on molecular and physiological mechanisms explaining this association is limited. Here we addressed this question by studying the role of CAPN10 for phenotypes associated with type 2 diabetes and free fatty acid (FFA) metabolism. Among 395 type 2 diabetic patients and 298 nondiabetic control subjects from Finland, the SNP-43 allele 1 (P = 0.

View Article and Find Full Text PDF

Aims: Lipoprotein lipase (LPL) is a major regulator of triglyceride clearance. A genetic variant of the LPL gene on chromosome 8p22, Asn291Ser, has previously been associated with dyslipidaemia and an increased frequency of cardiovascular disease as well as familial disorders of lipoprotein metabolism. The aim of this study was to test whether the phenotypic expression of the LPL Asn291Ser variant is dependent upon glucose tolerance and insulin resistance.

View Article and Find Full Text PDF