Publications by authors named "M Killinger"

Polyetheretherketone (PEEK) is considered as an excellent biomaterial for bone grafting and connective tissue replacement. The clinical potential is, however, limited by its bioinertness, poor osteoconduction, and weak antibacterial activity. These disadvantages can be overcome by introducing suitable additives to produce mineral-polymer composites or coatings.

View Article and Find Full Text PDF

Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications.

View Article and Find Full Text PDF

With the goal to investigate biological phenomena at a single-cell level, we designed, synthesized and tested a molecular probe based on Förster resonance energy transfer (FRET) between a highly luminescent quantum dot (QD) as a donor and a fluorophore or fluorescence quencher as an acceptor linked by a specific peptide. In principle, QD luminescence, effectively dissipated in the probe, is switched on after the cleavage of the peptide by a protease and the release of the quencher. We proposed a novel synthesis strategy of a probe.

View Article and Find Full Text PDF

The estrogenic mycotoxin zearalenone (ZEN) is a common contaminant of animal feed. Effective strategies for the inactivation of ZEN in feed are required. The ZEN-degrading enzyme zearalenone hydrolase ZenA (EC 3.

View Article and Find Full Text PDF

With increasing demands on protein analyses in complex biological matrices, the insistence on developing new sample preparation techniques is rising. Recently, we introduced a new displacement electrophoresis technique (epitachophoresis) and instrumentation for preparative concentration and cleaning of DNA samples. This work describes the possibility of applying this device to protein samples.

View Article and Find Full Text PDF