Publications by authors named "M Kihiko"

Amyloid-beta (Abeta) appears critical to Alzheimer's disease. To clarify possible mechanisms of Abeta action, we have quantified Abeta-induced gene expression in vitro by using Abeta-treated primary cortical neuronal cultures and in vivo by using mice transgenic for the Abeta precursor (AbetaP). Here, we report that aggregated, but not nonaggregated, Abeta increases the level of the mRNAs encoding tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA).

View Article and Find Full Text PDF

The role of gene expression in neuronal apoptosis may be cell- and apoptotic stimulus-specific. Previously, we and others showed that amyloid beta (Abeta)-induced neuronal apoptosis is accompanied by c-jun induction. Moreover, c-Jun contributes to neuronal death in several apoptosis paradigms involving survival factor withdrawal.

View Article and Find Full Text PDF

The excitatory neurotransmitter glutamate is believed to play important roles in development, synaptic plasticity, and neurodegenerative conditions. Recent studies have shown that neurotrophic factors can modulate neuronal excitability and survival and neurite outgrowth responses to glutamate, but the mechanisms are unknown. The present study tested the hypothesis that neurotrophic factors modulate responses to glutamate by affecting the expression of specific glutamate-receptor proteins.

View Article and Find Full Text PDF