Background: Patients with Parkinson's disease (PD) experience changes in behavior, personality, and cognition that can manifest even in the initial stages of the disease. Previous studies have suggested that mild behavioral impairment (MBI) should be considered an early marker of cognitive decline. However, the precise neurostructural underpinnings of MBI in early- to mid-stage PD remain poorly understood.
View Article and Find Full Text PDFPatients with Parkinson's Disease (PD) often suffer from cognitive decline. Accurate prediction of cognitive decline is essential for early treatment of at-risk patients. The aim of this study was to develop and evaluate a multimodal machine learning model for the prediction of continuous cognitive decline in patients with early PD.
View Article and Find Full Text PDFIntroduction: Brain atrophy in Parkinson's disease occurs to varying degrees in different brain regions, even at the early stage of the disease. While cortical morphological features are often considered independently in structural brain imaging studies, research on the co-progression of different cortical morphological measurements could provide new insights regarding the progression of PD. This study's aim was to examine the interplay between cortical curvature and thickness as a function of PD diagnosis, motor symptoms, and cognitive performance.
View Article and Find Full Text PDFCognitive impairments are prevalent in Parkinson's disease (PD), but the underlying mechanisms of their development are unknown. In this study, we aimed to predict global cognition (GC) in PD with machine learning (ML) using structural neuroimaging, genetics and clinical and demographic characteristics. As a post-hoc analysis, we aimed to explore the connection between novel selected features and GC more precisely and to investigate whether this relationship is specific to GC or is driven by specific cognitive domains.
View Article and Find Full Text PDF