Publications by authors named "M Khodas"

In metallic transition metal dichalcogenides (TMDs), which remain superconducting down to single-layer thickness, the critical temperature T decreases for Nb-based, and increases for Ta-based materials. This contradicting trend is puzzling, impeding the development of a unified theory. Here we study the thickness-evolution of superconducting tunneling spectra in TaSheterostructures.

View Article and Find Full Text PDF

Nitrogen-Vacancy (NV) centers in diamonds have been shown in recent years to be excellent magnetometers on the nanoscale. One of the recent applications of the quantum sensor is retrieving the Nuclear Magnetic Resonance (NMR) spectrum of a minute sample, whose net polarization is well below the Signal-to-Noise Ratio (SNR) of classic devices. The information in the magnetic noise of diffusing particles has also been shown in decoherence spectroscopy approaches to provide a method for measuring different physical parameters.

View Article and Find Full Text PDF

Strongly interacting bosons display a rich variety of quantum phases, the study of which has so far been focused in the dilute regime, at a fixed number of particles. Here we demonstrate the formation of a dense Bose-Einstein condensate in a long-lived dark spin state of 2D dipolar excitons. A dark condensate of weakly interacting excitons is very fragile, being unstable against a coherent coupling of dark and bright spin states.

View Article and Find Full Text PDF

Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe devices at 70 mK.

View Article and Find Full Text PDF

We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies.

View Article and Find Full Text PDF