The key physical processes in polymeric filters used for the blood purification include transport across the capillary wall and the interaction of blood cells with the polymer membrane surface. Theoretical modeling of membrane transport is an important tool which provides researchers with a quantification of the complex phenomena involved in dialysis. In the paper, we present a dense review of the most successful theoretical approaches to the description of transport across the polymeric membrane wall as well as the cell⁻polymer surface interaction, and refer to the corresponding experimental methods while studying these phenomena in dialyzing filters.
View Article and Find Full Text PDFThe phenomenon of physical contact between red blood cells and artificial surfaces is considered. A fully three-dimensional mathematical model of a bilayer membrane in contact with an artificial surface is presented. Numerical results for the different geometries and adhesion intensities are found to be in agreement with experimentally observed geometries obtained by means of digital holographic microscopy.
View Article and Find Full Text PDFThe mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in real-time by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size.
View Article and Find Full Text PDFIn this study we report a physical analysis of the membrane mechanics affecting the size of the highly curved region of a lipid nanotube (LNT) that is either connected between a lipid bilayer vesicle and the tip of a glass microinjection pipette (tube-only) or between a lipid bilayer vesicle and a vesicle that is attached to the tip of a glass microinjection pipette (two-vesicle). For the tube-only configuration (TOC), a micropipette is used to pull a LNT into the interior of a surface-immobilized vesicle, where the length of the tube L is determined by the distance of the micropipette to the vesicle wall. For the two-vesicle configuration (TVC), a small vesicle is inflated at the tip of the micropipette tip and the length of the tube L is in this case determined by the distance between the two interconnected vesicles.
View Article and Find Full Text PDFBy exploiting the capabilities of steady-state electrochemical measurements, we have measured the inner diameter of a lipid nanotube using Fick's first law of diffusion in conjunction with an imposed linear concentration gradient of electroactive molecules over the length of the nanotube. Fick's law has been used in this way to provide a direct relationship between the nanotube diameter and the measurable experimental parameters Deltai (change in current) and nanotube length. Catechol was used to determine the Deltai attributed to its flux out of the nanotube.
View Article and Find Full Text PDF