Incorporating an intentional strain compensating InSb interface (IF) layer in InAs/GaSb type-II superlattices (T2SLs) enhances device performance. But there is a lack of studies that correlate this approach's optical and structural quality, so the mechanisms by which this improvement is achieved remain unclear. One critical issue in increasing the performance of InAs/GaSb T2SLs arises from the lattice mismatch between InAs and GaSb, leading to interfacial strain in the structure.
View Article and Find Full Text PDFAt room temperature, a 10 µm cut-off wavelength coincides with an infrared spectral window and the peak emission of blackbody objects. We report a 10 µm cut-off wavelength InAs/GaSb T2SL p-i-n diode on a GaAs substrate with an intentional interfacial misfit (IMF) array between the GaSb buffer layer and GaAs substrate. Transmission electron microscopy and energy-dispersive X-ray spectroscopy revealed that the heterostructure on GaSb-on-GaAs is epitaxial, single-crystalline but with a reduced material homogeneity, extended lattice defects and atomic segregation/intermixing in comparison to that on the GaSb substrate.
View Article and Find Full Text PDFA detailed understanding of the optical properties of self-catalysed (SC), zinc blende (ZB) dominant, nanowires (NWs) is crucial for the development of functional and impurity-free nanodevices. Despite the fact that SC InAs NWs mostly crystallize in the WZ/ZB phase, there are very limited reports on the photoluminescence (PL) properties of ZB InAs NWs. Here, we report on the PL properties of Molecular Beam Epitaxy grown, SC InAs NWs.
View Article and Find Full Text PDFInterband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states.
View Article and Find Full Text PDF