Publications by authors named "M Kenigsberg"

Obesity epidemic continues to spread and obesity rates are increasing in the world. In addition to public health effort to reduce obesity, there is a need to better understand the underlying biology to enable more effective treatment and the discovery of new pharmacological agents. Abhydrolase domain-containing protein 11 (ABHD11) is a serine hydrolase enzyme, localized in mitochondria, that can synthesize the endocannabinoid 2-arachidonoyl glycerol (2AG) in vitro.

View Article and Find Full Text PDF

The HGF/MET pathway is frequently activated in a variety of cancer types. Several selective small molecule inhibitors of the MET kinase are currently in clinical evaluation, in particular for NSCLC, liver, and gastric cancer patients. We report herein the discovery of a series of triazolopyridazines that are selective inhibitors of wild-type (WT) MET kinase and several clinically relevant mutants.

View Article and Find Full Text PDF

Activation of the MET/HGF pathway is common in human cancer and is thought to promote tumor initiation, metastasis, angiogenesis, and resistance to diverse therapies. We report here the pharmacologic characterization of the triazolopyridazine derivative SAR125844, a potent and highly selective inhibitor of the MET receptor tyrosine kinase (RTK), for intravenous administration. SAR125844 displayed nanomolar activity against the wild-type kinase (IC50 value of 4.

View Article and Find Full Text PDF

A rat single-chain Fv (Y238 scFv) was derived from the Y13-238 monoclonal antibody, a non-neutralizing anti-Ras antibody. The Y13-238 hybridoma expresses two functional light chains. N-terminus microsequencing of these chains showed the presence of the Y3 Ag1.

View Article and Find Full Text PDF

Mutated ras genes are found in a large number of human tumors and, therefore, constitute one of the primary targets for cancer treatment. Microinjection of the neutralizing anti-Ras monoclonal antibody Y13-259 was previously reported to induce transient phenotypic reversion of ras-transformed rodent fibroblasts in vitro. We have prepared a single-chain Fv fragment (scFv) derived from Y13-259, and here, we show that intracellular expression of the scFv led to the specific inhibition of the Ras signaling pathway in Xenopus laevis oocytes and NIH3T3 fibroblasts.

View Article and Find Full Text PDF