Understanding the processes that underlay an ecological disaster represents a major scientific challenge. Here, we investigated phytoplankton and zooplankton community changes before and during a fauna mass kill in a European protected wetland. Evidence on gradual development and collapse of harmful phytoplankton blooms, allowed us to delineate the biotic and abiotic interactions that led to this ecological disaster.
View Article and Find Full Text PDFThe enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States.
View Article and Find Full Text PDFToxic cyanobacteria occur in Greek surface water bodies. However, studies on the occurrence of cyanotoxins (CTs) are often limited to mainly microcystins (MCs), with use of screening methods, such as ELISA, that are not conclusive of the chemical structure of the CT variants and can be subject to false positive results. A multi-lake survey in Greece (14 lakes) was conducted in water and biomass, targeted to a wide range of multi-class CTs including MCs, nodularin-R (NOD), cylindrospermopsin (CYN), anatoxin-a (ANA-a) and saxitoxins (STXs), using multi-class/variant LC-MS/MS analytical workflows, achieving sensitive detection, definitive identification and accurate quantitation.
View Article and Find Full Text PDFToxic cyanobacterial blooms have been implicated for their negative consequences on many terrestrial and aquatic organisms. Water birds belong to the most common members of the freshwater food chains and are most likely to be affected by the consumption of toxic cyanobacteria as food. However, the contribution of cyanotoxins in bird mortalities is under-studied.
View Article and Find Full Text PDFThe cyanobacterium Arthrospira is among the most well-known food supplements worldwide known as "Spirulina." While it is a widely recognized health-promoting natural product, there are no reports on the molecular diversity of commercially available brands of "Spirulina" supplements and the occurrence of other cyanobacterial and heterotrophic bacterial microorganisms in these products. In this study, 454-pyrosequencing analysis of the total bacterial occurrence in 31 brands of "Spirulina" dietary supplements from the Greek market was applied for the first time.
View Article and Find Full Text PDF