Publications by authors named "M Kasperczyk"

Acute pancreatitis (AP) manifests itself either as a mild, self-limiting inflammation or a severe, systemic inflammatory process that is associated with various complications and a high mortality rate. It is unknown whether these two forms of the disease can differ in the profile of circulating glycosaminoglycans, which are molecules with huge biological reactivity due to a high density of negative electric charge. Plasma glycosaminoglycans were characterized/quantified in 23 healthy controls, 32 patients with mild AP, and 15 individuals with severe disease using electrophoresis with enzymatic identification (chondroitin sulfate and heparan sulfate) or an ELISA-based test (hyaluronan).

View Article and Find Full Text PDF

We demonstrate the use of shortcuts to adiabaticity protocols for initialization, read-out, and coherent control of dressed states generated by closed-contour, coherent driving of a single spin. Such dressed states have recently been shown to exhibit efficient coherence protection, beyond what their two-level counterparts can offer. Our state transfer protocols yield a transfer fidelity of ∼99.

View Article and Find Full Text PDF

We report on direct, real-space imaging of the stray magnetic field above a micro-scale disc of a thin film of the high-temperature superconductor YBa₂Cu₃O (YBCO) using scanning single spin magnetometry. Our experiments yield a direct measurement of the sample's London penetration depth and allow for a quantitative reconstruction of the supercurrents flowing in the sample as a result of Meissner screening. These results show the potential of scanning single spin magnetometry for studies of the nanoscale magnetic properties of thin-film superconductors, which could be readily extended to elevated temperatures or magnetic fields.

View Article and Find Full Text PDF

Scintillator-based X-ray imaging is a powerful technique for noninvasive real-space microscopic structural investigation such as synchrotron-based computed tomography. The resolution of an optical image formed by scintillation emission is fundamentally diffraction limited. To overcome this limit, stimulated scintillation emission depletion (SSED) X-ray imaging, based on stimulated emission depletion (STED) microscopy, has been recently developed.

View Article and Find Full Text PDF

Water is one of the most prevalent chemicals on our planet, an integral part of both our environment and our existence as a species. Yet it is also rich in anomalous behaviors. Here we reveal that water is a novel-yet ubiquitous-source for quantum correlated photon pairs at ambient conditions.

View Article and Find Full Text PDF