Cellular barcoding offers a powerful approach to characterize the growth and differentiation activity of large numbers of cotransplanted stem cells. Here, we describe a lentiviral genomic-barcoding and analysis strategy and its use to compare the clonal outputs of transplants of purified mouse and human basal mammary epithelial cells. We found that both sources of transplanted cells produced many bilineage mammary epithelial clones in primary recipients, although primary clones containing only one detectable mammary lineage were also common.
View Article and Find Full Text PDFA patient with β(E)/β(0) -thalassemia major was converted to transfusion-independence 4.5 years ago by lentiviral gene transfer in hematopoietic stem cells while showing a myeloid-biased cell clone. Induced pluripotent stem cells (iPSCs) are a potential alternative source of hematopoietic stem cells.
View Article and Find Full Text PDFUnderstanding the steps and cues that allow hematopoietic cells to be generated during development holds great clinical as well as biological interest. Analysis of these events in mice has provided many important insights into the processes involved, but features that might be unique to humans remain challenging to elucidate because they cannot be studied directly in vivo. Human embryonic stem or induced pluripotent stem cells offer attractive in vitro alternatives to analyze the process.
View Article and Find Full Text PDFRealizing the potential that human embryonic stem cells (hESCs) hold, both for the advancement of biomedical science and the development of new treatments for many human disorders, will be greatly facilitated by the introduction of standardized methods for assessing and altering the biological properties of these cells. The 7-day in vitro alkaline phosphatase colony-forming cell (AP(+)-CFC) assay currently offers the most sensitive and specific method to quantify the frequency of undifferentiated cells present in a culture. In this regard, it is superior to any phenotypic assessment protocol.
View Article and Find Full Text PDFObjective: Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) constitute unique sources of pluripotent cells, although the molecular mechanisms involved in their differentiation into specific lineages are just beginning to be defined. Here we evaluated the ability of MEDII (medium conditioned by HepG2 cells, a human hepatocarcinoma cell line) to selectively enhance generation of mesodermal derivatives, including hematopoietic cells, from hESCs and hiPSCs.
Materials And Methods: Test cells were exposed to MEDII prior to being placed in conditions that promote embryoid body (EB) formation.