Chitosan is widely used in drug delivery applications, due to its biocompatibility, bio-degradability, and low toxicity. Nevertheless, its properties can be enhanced through the physical or chemical modification of its amino and hydroxyl groups. This work explores the electrostatic complexation of two chitosan samples of differing lengths with two poly(-isopropylacrylamide) (PNIPAM) homopolymers of different molecular weight carrying a chargeable carboxyl end group.
View Article and Find Full Text PDFNatural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g.
View Article and Find Full Text PDFLipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative.
View Article and Find Full Text PDFA hybrid synthetic-natural, thermoresponsive graft copolymer composed of poly(-isopropyl acrylamide) (PNIPAM) side chains, prepared via RAFT polymerization, and a chitosan (Chit) polysaccharide backbone, was synthesized via radical addition-fragmentation reactions using the "grafting to" technique, in aqueous solution. ATR-FTIR, TGA, polyelectrolyte titrations and H NMR spectroscopy were employed in order to validate the Chit--PNIPAM copolymer chemical structure. Additionally, H NMR spectra and back conductometric titration were utilized to quantify the content of grafted PNIPAM side chains.
View Article and Find Full Text PDFChitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections.
View Article and Find Full Text PDF