Previous works show the key role of electrostatics in the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus-environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized.
View Article and Find Full Text PDFThe efficient transport of small molecules through dense hydrogel networks is crucial for various applications, including drug delivery, biosensing, catalysis, nanofiltration, water purification, and desalination. In dense polymer matrices, such as collapsed microgels, molecular transport follows the solution-diffusion principle: Molecules dissolve in the polymeric matrix and subsequently diffuse due to a concentration gradient. Employing dynamical density functional theory (DDFT), we investigate the nonequilibrium release kinetics of nonionic subnanometer-sized molecules from a microgel particle, using parameters derived from prior molecular simulations of a thermoresponsive hydrogel.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2024
Adsorption of surfactants to fluid interfaces occurs in numerous technological and daily-life contexts. The coverage at the interface and other properties of the formed adsorption layers determine the performance of a surfactant with regard to the desired application. Given the importance of these applications, there is a great demand for the comprehensive characterization and understanding of surfactant adsorption layers.
View Article and Find Full Text PDFPolar surfaces in water typically repel each other at close separations, even if they are charge-neutral. This so-called hydration repulsion balances the van der Waals attraction and gives rise to a stable nanometric water layer between the polar surfaces. The resulting hydration water layer is crucial for the properties of concentrated suspensions of lipid membranes and hydrophilic particles in biology and technology, but its origin is unclear.
View Article and Find Full Text PDFIn this study, the wettability of a kerogen surface, a key component of shale reservoirs, is investigated by using molecular dynamics simulations. Specifically, we examined the impact of droplet size and morphology as well as surface roughness on the water contact angles. The findings highlighted that the contact angle dependency on the droplet size intensifies with increased rigidity of the surface.
View Article and Find Full Text PDF