Publications by authors named "M Kalyva"

Induction of senescence by chemotherapeutic agents arrests cancer cells and activates immune surveillance responses to contribute to therapy outcomes. In this investigation, we searched for ways to enhance the NK-mediated elimination of senescent cells. We used a staggered screen approach, first identifying siRNAs potentiating the secretion of immunomodulatory cytokines to later test for their ability to enhance NK-mediated killing of senescent cells.

View Article and Find Full Text PDF

Exposure assessment is a crucial component of environmental health research, providing essential information on the potential risks associated with various chemicals. A systematic scoping review was conducted to acquire an overview of accessible human exposure assessment methods and computational tools to support and ultimately improve risk assessment. The systematic scoping review was performed in Sysrev, a web platform that introduces machine learning techniques into the review process aiming for increased accuracy and efficiency.

View Article and Find Full Text PDF

Background: As normal cells transform into cancers, their cell state changes, which may drive cancer cells into a stem-like or more primordial, foetal, or embryonic cell state. The transcriptomic profile of this final state may encode information about cancer's origin and how cancers relate to their normal cell counterparts.

Methods: Here, we used single-cell atlases to study cancer transformation in transcriptional terms.

View Article and Find Full Text PDF

The evidence for a role of somatic mutations, including copy-number variants (CNVs), in neurodegeneration has increased in the last decade. However, the understanding of the types and origins of these mutations, and their exact contributions to disease onset and progression, is still in its infancy. The use of single-cell (or nuclear) whole-genome sequencing (scWGS) has emerged as a powerful tool to answer these questions.

View Article and Find Full Text PDF

Nearly one third of protein coding sequences correspond to duplicate genes, equally split between small-scale duplicates (SSD) and whole-genome duplicates (WGD). While duplicate genes have distinct properties compared to singletons, to date, there has been no systematic analysis of their positional preferences. In this work, we show that SSD and WGD genes are organized in distinct gene clusters that occupy different genomic regions, with SSD being more peripheral and WGD more centrally positioned close to centromeric chromatin.

View Article and Find Full Text PDF