Plants are continuously interacting with other organisms to optimize their performance in a changing environment. Mycorrhization is known to affect the plant growth and nutrient status, but it also can lead to adjusted plant defense and alter interactions with other trophic levels. Here, we studied the effect of -mycorrhization on the poplar ( x ) metabolome and volatilome on trees with and without a poplar leaf beetle () infestation.
View Article and Find Full Text PDFSymbioses between plants and mycorrhizal fungi are ubiquitous in ecosystems and strengthen the plants' defense against aboveground herbivores. Here, we studied the underlying regulatory networks and biochemical mechanisms in leaves induced by ectomycorrhizae that modify herbivore interactions. Feeding damage and oviposition by the widespread poplar leaf beetle were reduced on the ectomycorrhizal hybrid poplar × Integration of transcriptomics, metabolomics, and volatile emission patterns via mass difference networks demonstrated changes in nitrogen allocation in the leaves of mycorrhizal poplars, down-regulation of phenolic pathways, and up-regulation of defensive systems, including protease inhibitors, chitinases, and aldoxime biosynthesis.
View Article and Find Full Text PDFBackground: Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants.
View Article and Find Full Text PDFPlants have to cope with various abiotic stresses including UV-B radiation (280-315 nm). UV-B radiation is perceived by a photoreceptor, triggers morphological responses and primes plant defence mechanisms such as antioxidant levels, photoreapir or accumulation of UV-B screening pigments. As poplar is an important model system for trees, we elucidated the influence of UV-B on overall metabolite patterns in poplar leaves grown under high UV-B radiation.
View Article and Find Full Text PDF