Nitric oxide (NO) is an important gas mediator in the signal transduction cascade regulating osmotic function in the hypothalamo-neurohypophysial system. We previously found that increased nitric oxide synthase (NOS) activity in the supraoptic nuclei (SON) and neural lobe following osmotic stimulation and NO could regulate the expression of Ca(2+)-activated K(+) channel (BK channels) protein in the magnocellular system during dehydration. The aim of the current study is to examine the role of NO in the regulation of nitrosocysteine and BK channel protein in the magnocellular system in dehydrated animals.
View Article and Find Full Text PDFNitric oxide (NO) is a gas molecule to signal neurotransmission in the hypothalamo-neurohypophysial system during osmotic regulation. We previously reported that osmotic stimulation increased nitric oxide synthase (NOS) activity in the supraoptic nuclei (SON) and neural lobe. The aim of this study is to define the role of NO in the regulation of Ca(2+)-activated K(+) channels (BK channels) expression in the magnocellular system following dehydration.
View Article and Find Full Text PDFNitric oxide (NO), a free radical gas produced endogenously from the amino acid L-arginine by NO synthase (NOS), has important functions in modulating vasopressin and oxytocin secretion from the hypothalamo-neurohypophyseal system. NO production is stimulated during increased functional activity of magnocellular neurons, in parallel with plastic changes of the supraoptic nucleus (SON) and paraventricular nucleus. Electrophysiological data recorded from the SON of hypothalamic slices indicate that NO inhibits firing of phasic and non-phasic neurons, while L-NAME, an NOS inhibitor, increases their activity.
View Article and Find Full Text PDFOur objective was to test the hypothesis that the cGMP signal-transduction mechanism mediates nitric oxide's (NO) modulation of oxytocin (OT) and vasopressin (VP) secretion from the hypothalamo-neurohypophysial system. Three studies were conducted in adult male Sprague-Dawley rats: (1a) Euhydrated rats received an intracerebroventricular (icv) infusion (1 microl/min for 30 min) of artificial cerebrospinal fluid (aCSF), vehicle (2.6% dimethyl sulfoxide [DMSO]) or 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) (0.
View Article and Find Full Text PDFWe tested the hypothesis that in spontaneously hypertensive rat (SHR) NO produced centrally influences the resting arterial blood pressure by attenuating mechanisms involving prostaglandins, angiotensin II, endothelin and sympathetic nervous system. L-NAME (200 micro g/5 micro l), an inhibitor of NO synthase, administered intracerebroventricularly (i.c.
View Article and Find Full Text PDF