Time-domain diffuse correlation spectroscopy (td-DCS) enables the depth discrimination in tissue's blood flow recovery, considering the fraction of photons detected with higher time of flight (TOF) and longer pathlength through the tissue. However, the recovery result depends on factors such as the instrument response function (IRF), analyzed TOF gate start time, gate width and the source-detector separation (SDS). In this research we evaluate the performance of the td-DCS technique at three SDSs of 1.
View Article and Find Full Text PDFTrees in cities perform important environmental functions: they produce oxygen, filter pollutants, provide habitat for wildlife, mitigate stormwater runoff, and reduce the effects of climate change, especially in terms of lowering temperatures and converting carbon dioxide from the atmosphere into stored carbon. Generally, to increase the environmental benefits of urban forests, the number of trees is increased, directly influencing the canopy coverage. However, little is known about potential of modifying the species composition of urban tree communities in order to increase ecological benefits.
View Article and Find Full Text PDFResearch on the spatial distribution of sensitivity of time-domain near infrared diffuse reflectance measurement is reported in this paper. The main objective of the investigation is to validate theoretically calculated sensitivity profiles for a measurement geometry with two detectors and two sources in which sensitivity profiles of statistical moments of distributions of time of flight of photons (DTOFs) are spatially restricted to a region underneath the detectors. For this dual subtraction method, smaller sensitivities to changes appearing in the superficial layer of the medium were observed compared to the single distance and single subtraction methods.
View Article and Find Full Text PDF