Publications by authors named "M K Van Bael"

The use of magnetic-driven strategies for non-contact manipulation of engineered living modules opens up new possibilities for tissue engineering. The integration of magnetic nanoparticles (MNPs) with cartilaginous microtissues enables model-driven 4D bottom-up biofabrication of remotely actuated assembloids, providing unique properties to mechanoresponsive tissues, particularly skeletal constructs. However, for clinical use, the long-term effects of magnetic stimulation on phenotype and in vivo functionality need further exploration.

View Article and Find Full Text PDF

The deployment of solid and quasi-solid electrolytes in lithium metal batteries is envisioned to push their energy densities to even higher levels, in addition to providing enhanced safety. This article discusses a set of hybrid solid composite electrolytes which combine functional properties with electrode compatibility and manufacturability. Their anodic stability >5 V versus Li/Li and compatibility with lithium metal stem from the incorporated ionic liquid electrolyte, whereas the organic-inorganic hybrid host structure boosts their conductivity up to 2.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are a more sustainable alternative to lithium-ion batteries (LIBs) considering the abundance, global distribution, and low cost of sodium. However, their economic impact remains small compared to LIBs, owing in part to the lag in materials development where significant improvements in energy density and safety remain to be realized. Deep eutectic solvents (DESs) show promise as alternatives to conventional electrolytes in SIBs because of their nonflammable nature.

View Article and Find Full Text PDF

Correction for 'Performance of ferrite nanoparticles in inductive heating swing adsorption (IHSA): how tailoring material properties can circumvent the design limitations of a system' by Maxim De Belder , , 2024, , 4144-4149, https://doi.org/10.1039/d4mh00377b.

View Article and Find Full Text PDF

The energy landscape of multiply connected superconducting structures is ruled by fluxoid quantization due to the implied single-valuedness of the complex wave function. The transitions and interaction between these energy states, each defined by a specific phase winding number, are governed by classical and/or quantum phase slips. Understanding these events requires the ability to probe, noninvasively, the state of the ring.

View Article and Find Full Text PDF