This study aims to develop an organ-on-a-chip model, intervertebral Disc-on-a-Chip, to investigate integrated effects of mechanical loading and nutrition on disc health. The system consists of a detachable multilayer microfluidic chip, a Computer-Arduino-based control system, and a mechanical loading unit, which were optimized for accurate axial force measurement and the maintenance of a 21-day disc culture. To ensure accuracy of axial force, we optimized the axial mechanical loading regimen, used the Computer-Arduino-based system and low-profile force sensors (LPFS) to control the mechanical loading unit, and modeled the force distribution by using computational simulation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2022
Smartphone technology has been recently applied for biomedical image acquisition and data analysis due to its high-quality imaging capability, and flexibility to customize multi-purpose apps. In this work, we developed and characterized a smartphone-microfluidic fluorescence imaging system for studying the physiology of pancreatic islets. We further evaluated the system capability by performing real-time fluorescence imaging on mouse islets labeled with either chemical fluorescence dyes or genetically encoded fluorescent protein indicators (GEFPIs).
View Article and Find Full Text PDFIslet beta-cell viability, function, and mass are three decisive attributes that determine the efficacy of human islet transplantation for type 1 diabetes mellitus (T1DM) patients. Islet mass is commonly assessed manually, which often leads to error and bias. Digital imaging analysis (DIA) system has shown its potential as an alternative, but it has some associated limitations.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
May 2020
Mechanical loading plays an important role in maintaining disc health and function, and in particular, excessive mechanical loading has been identified as one of major reasons of disc degeneration. Intervertebral disc organ culture serves as a valuable tool to study disc biology/pathology. In this study, we report the development and validation of a new mouse disc organ culture system by dynamically applying compression loading in a customized micro-culture device tailored for mouse lumbar discs.
View Article and Find Full Text PDFBioartificial pancreas made of insulin-secreting islets cells holds great promise in the treatment of individuals with Type-1 diabetes. Successful islet cell microencapsulation in biopolymers is a key step for providing immunoisolation of transplanted islet cells. Because of the variability in the size and shape of pancreatic islets, one of the main obstacles in their microencapsulation is the inability to consistently control shape, size, and microstructure of the encapsulating biopolymer capsule.
View Article and Find Full Text PDF