Publications by authors named "M K MCDOWELL"

Anode-free solid-state batteries contain no active material at the negative electrode in the as-manufactured state, yielding high energy densities for use in long-range electric vehicles. The mechanisms governing charge-discharge cycling of anode-free batteries are largely controlled by electro-chemo-mechanical phenomena at solid-solid interfaces, and there are important mechanistic differences when compared with conventional lithium-excess batteries. This Perspective provides an overview of the factors governing lithium nucleation, growth, stripping and cycling in anode-free solid-state batteries, including mechanical deformation of lithium, the chemical and mechanical properties of the current collector, microstructural effects, and stripping dynamics.

View Article and Find Full Text PDF

Solid-state batteries (SSBs) with silicon anodes could enable improved safety and energy density compared to lithium-ion batteries. However, degradation arising from the massive volumetric changes of silicon anodes during cycling is not well understood in solid-state systems. Here, we use X-ray computed microtomography to reveal micro- to macro-scale chemo-mechanical degradation processes of silicon anodes in SSBs.

View Article and Find Full Text PDF
Article Synopsis
  • - The ability of viruses to infect various hosts is typically limited by fitness trade-offs, where mutations that help in one host may harm another, a concept known as antagonistic pleiotropy.
  • - However, there is increasing evidence of positive pleiotropy, where beneficial mutations can enhance fitness across multiple hosts, indicating that these mutations could help overcome fitness trade-offs.
  • - A meta-analysis reveals that while both antagonistic and positive pleiotropy exist, positive pleiotropy is common, suggesting that many fitness trade-offs can be surmounted by evolution when proper selection pressures are applied.
View Article and Find Full Text PDF

Purpose: This Hydrocephalus Clinical Research Network (HCRN) study had two aims: (1) to compare the predictive performance of the original ETV Success Score (ETVSS) using logistic regression modeling with other newer machine learning models and (2) to assess whether inclusion of imaging variables improves prediction performance using machine learning models.

Methods: We identified children undergoing first-time ETV for hydrocephalus that were enrolled prospectively at HCRN sites between 200 and 2020. The primary outcome was ETV success 6 months after index surgery.

View Article and Find Full Text PDF

Platelet aggregation is intimately associated with vascular inflammation and is commonly seen on routine histology studies of cerebral aneurysms. Platelets, when activated, have been shown to augment neutrophil response and the pro-inflammatory cascade. Platelet-neutrophil complexes have been found to aggravate atherosclerosis through a positive feedback loop.

View Article and Find Full Text PDF