Publications by authors named "M K Kuimova"

Visualization of guanine-rich oligonucleotides that fold into G-quadruplex (G4) helical structures is of great interest in cell biology. There is a large body of evidence that suggests that these noncanonical structures form and play important biological roles. A promising recent development highlighted fluorescence lifetime imaging microscopy (FLIM) as a robust technique for the direct and quantitative imaging of G4s in live cells.

View Article and Find Full Text PDF

Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood.

Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor.

View Article and Find Full Text PDF

Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts.

View Article and Find Full Text PDF

Current anticancer therapies suffer from issues such as off-target side effects and the emergence of drug resistance; therefore, the discovery of alternative therapeutic approaches is vital. These can include the development of drugs with different modes of action, and the exploration of new biomolecular targets. For the former, there has been increasing interest in drugs that are activated by an external stimulus (e.

View Article and Find Full Text PDF