Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins. They are believed to underlie the experimentally observed lateral heterogeneity of eukaryotic plasma membranes and implicated in many cellular processes, such as signaling and trafficking. Ternary model membranes consisting of saturated lipids, unsaturated lipids, and cholesterol are common proxies because they exhibit phase coexistence between a liquid-ordered (lo) and liquid-disordered (ld) phase and an associated critical point.
View Article and Find Full Text PDFMethods Enzymol
July 2024
The lateral stress profile of a lipid bilayer constitutes a valuable link between molecular simulation and mesoscopic elastic theory. Even though it is frequently calculated in simulations, its statistical precision (or that of observables derived from it) is often left unspecified. This omission can be problematic, as uncertainties are prerequisite to assessing statistical significance.
View Article and Find Full Text PDFMany biological membranes host different lipid species in their two leaflets. Since their spontaneous curvatures are typically not the same, this compositional asymmetry generally entails bending torques, which can be counteracted by differential stress-the difference between the two leaflet tensions. This stress, in turn, can affect elastic parameters or phase behavior of the membrane or each individual leaflet, or push easily flippable species, especially cholesterol, from the compressed leaflet into the tense leaflet.
View Article and Find Full Text PDFDNA nanostructures (DNs) have found increasing use in biosensing, drug delivery, and therapeutics because of their customizable assembly, size and shape control, and facile functionalization. However, their limited cellular uptake and nuclear delivery have hindered their effectiveness in these applications. Here, we demonstrate the potential of applying cell-surface binding as a general strategy to enable rapid enhancement of intracellular and intranuclear delivery of DNs.
View Article and Find Full Text PDFBiological lipid membranes are generally asymmetric, not only with respect to the composition of the two membrane leaflets but also with respect to the state of mechanical stress on the two sides. Computer simulations of such asymmetric membranes pose unique challenges with respect to the choice of boundary conditions and ensemble in which such simulations are to be carried out. Here, we demonstrate an alternative to the usual choice of fully periodic boundary conditions: The membrane is only periodic in one direction, with free edges running parallel to the single direction of periodicity.
View Article and Find Full Text PDF