Publications by authors named "M Jugulam"

Article Synopsis
  • Two polyploid grass weeds in Australia, Hordeum glaucum and Bromus diandrus, have developed resistance to glyphosate through the amplification of the EPSPS gene, which is crucial for their survival.
  • Research involved analyzing the EPSPS gene's genomic structure using molecular cytogenetic methods, showing that resistant plants have significantly more copies of the gene compared to susceptible ones.
  • The findings suggest that unequal crossover during meiosis may be responsible for the gene duplication, contributing to the evolution of glyphosate resistance in these weed species.
View Article and Find Full Text PDF

The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs.

View Article and Find Full Text PDF
Article Synopsis
  • - Weeds are valuable for research because they affect agriculture and can quickly adapt to changes caused by human activities.
  • - A shortage of genomic data limits the understanding of how weeds rapidly adapt, especially regarding traits like resistance to herbicides and stress tolerance.
  • - The International Weed Genomics Consortium aims to create genomic resources that enhance weed control research and support crop breeding by providing insights into adaptation and stress tolerance.
View Article and Find Full Text PDF

Tembotrione is a triketone herbicide widely used for broad-spectrum weed control in corn but not registered for use in wheat. A wide collection of spring, winter, and EMS-derived mutant lines of wheat was evaluated for their response to tembotrione treatment. Two winter wheat (WW) genotypes (WW-1 and WW-2) were found to be least sensitive to this herbicide, surviving >6 times the field recommended dose (92 g ai ha) compared to the most sensitive genotype (WW-24).

View Article and Find Full Text PDF

Background: Japanese brome (Bromus japonicus Thumb.) is one of the problematic annual weeds in winter wheat (Triticum aestivum L.) and is generally controlled by acetolactate synthase (ALS) inhibitors.

View Article and Find Full Text PDF