Publications by authors named "M Jubault"

The resistance of to clubroot, a major disease of Brassicaceae caused by the obligate protist , is controlled in part by epigenetic factors. The detection of some of these epigenetic quantitative trait loci (QTL) has been shown to depend on experimental conditions. The aim of the present study was to assess whether and how temperature and/or soil water availability influenced both the detection and the extent of the effect of response QTL.

View Article and Find Full Text PDF

Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassicaceae. Using a combination of quantitative trait locus (QTL) fine mapping, CRISPR-Cas9 validation, and extensive analyses of DNA sequence and methylation patterns, we revealed that the two adjacent neighboring NLR (nucleotide-binding and leucine-rich repeat) genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P. brassicae in Arabidopsis and that they are epigenetically regulated.

View Article and Find Full Text PDF

Clubroot, caused by Woronin, is one of the most important diseases of oilseed rape ( L.). The rapid erosion of monogenic resistance in clubroot-resistant (CR) varieties underscores the need to diversify resistance sources controlling disease severity and traits related to pathogen fitness, such as resting spore production.

View Article and Find Full Text PDF

Quantitative disease resistance, often influenced by environmental factors, is thought to be the result of DNA sequence variants segregating at multiple loci. However, heritable differences in DNA methylation, so-called transgenerational epigenetic variants, also could contribute to quantitative traits. Here, we tested this possibility using the well-characterized quantitative resistance of Arabidopsis to clubroot, a Brassica major disease caused by Plasmodiophora brassicae.

View Article and Find Full Text PDF

Nitrogen levels can modulate the effectiveness of clubroot resistance in an isolate- and host-specific manner. While the same QTL were detected under high and low nitrogen, their effects were altered. Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of oilseed rape and is known to be affected by nitrogen fertilization.

View Article and Find Full Text PDF