Publications by authors named "M Joniau"

To test the occurrence of local particularities during the unfolding of Ca2+-loaded goat alpha-lactalbumin (GLA) we replaced Trp60 and -118, either one or both, by Phe. In contrast with alternative studies, our recombinant alpha-lactalbumins are expressed in Pichia pastoris and do not contain the extra N-terminal methionine. The substitution of Trp60 leads to a reduction of the global stability.

View Article and Find Full Text PDF

Thermal and chemical unfolding studies of the calcium-binding canine lysozyme (CL) by fluorescence and circular dichroism spectroscopy show that, upon unfolding in the absence of calcium ions, a very stable equilibrium intermediate state is formed. At room temperature and pH 7.5, for example, a stable molten globule state is attained in 3 M GdnHCl.

View Article and Find Full Text PDF

Thermodynamic parameters for the unfolding of as well as for the binding of Ca(2+) to goat alpha-lactalbumin (GLA) and bovine alpha-lactalbumin (BLA) are deduced from isothermal titration calorimetry in a buffer containing 10 mM Tris-HCl, pH 7.5 near 25 degrees C. Among the different parameters available, the heat capacity increments (Delta C(p)) offer the most direct information for the associated conformational changes of the protein variants.

View Article and Find Full Text PDF

The problem as to why alpha-lactalbumin, in the absence of Ca(2+), forms a molten globule intermediate, in contrast to its structural homologue lysozyme, has been addressed by the construction of chimeras of human lysozyme in which either the Ca(2+)-binding loop or a part of helix C of bovine alpha-lactalbumin were transplanted. Previously, we have shown that the introduction of both structural elements together in the lysozyme matrix causes the apo form of the resulting chimera to display molten globule behavior during the course of thermal denaturation. In this article, we demonstrate that this molten globule character is not correlated with the Ca(2+)-binding loop.

View Article and Find Full Text PDF