Stromal interaction molecule 1 (STIM1) is critical for store-operated Ca entry (SOCE) and T cell activation. T helper 1 (T1) cells, which express T-bet (encoded by TBX21), mediate immunity to intracellular pathogens. Although SOCE is known to regulate other T lineages, its role in Th1 differentiation remains unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2023
The elongation factor TFIIS interacts with Paf1C complex to facilitate processive transcription by Pol II. We here determined the crystal structure of the trypanosoma TFIIS LW domain in a complex with the LFG motif of Leo1, as well as the structures of apo-form TFIIS LW domains from trypanosoma, yeast and human. We revealed that all three TFIIS LW domains possess a conserved hydrophobic core that mediates their interactions with Leo1.
View Article and Find Full Text PDFThe MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice.
View Article and Find Full Text PDFLiver is the central organ responsible for whole-body metabolism, and its constituent hepatocytes are the major players that carry out liver functions. Although they are highly differentiated and rarely divide, hepatocytes re-enter the cell cycle following hepatic loss due to liver damage or injury. However, the exact molecular mechanisms underlying cell cycle re-entry remain undefined.
View Article and Find Full Text PDFLiver regeneration and metabolism are highly interconnected. Here, we show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including ), and up-regulation of through activation of p53 signaling. In the absence of p53, Gdown1-deficient hepatocytes show a severe dysregulation of cell cycle progression, with incomplete mitoses, and a premalignant-like transformation.
View Article and Find Full Text PDF