At present, the power conversion efficiency of single-junction perovskite-based solar cells reaches over 26%. The further efficiency increase of perovskite-based optoelectronic devices is limited mainly by defects, causing the nonradiative recombination of charge carriers. To improve efficiency and ensure reproducible fabrication of high-quality layers, it is crucial to understand the perovskite nucleation and growth mechanism along with associated process control to reduce the defect density.
View Article and Find Full Text PDFThe surface-enhanced Raman scattering (SERS) properties of low-dimensional semiconducting MXene nanoflakes have been investigated over the last decade. Despite this fact, the relationship between the surface characteristics and SERSing performance of a MXene layer has yet to be comprehensively investigated and elucidated. This work shows the importance of surface morphology on the overall SERS effect by studying few-layer TiCT MXene-based SERS substrates fabricated by vacuum-assisted filtration (VAF) and spray coating on filter paper.
View Article and Find Full Text PDFPhotothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation.
View Article and Find Full Text PDFThe efficiency of perovskite-based solar cells has increased dramatically over the past decade to as high as 25%, making them very attractive for commercial use. Vapor deposition is a promising technique that potentially enables fabrication of perovskite solar cells on large areas. However, to implement a large-scale deposition method, understanding and controlling the specific growth mechanisms are essential for the reproducible fabrication of high-quality layers.
View Article and Find Full Text PDFThe few-layer transition metal dichalcogenides (TMD) are an attractive class of materials due to their unique and tunable electronic, optical, and chemical properties, controlled by the layer number, crystal orientation, grain size, and morphology. One of the most commonly used methods for synthesizing the few-layer TMD materials is the chemical vapor deposition (CVD) technique. Therefore, it is crucial to develop in situ inspection techniques to observe the growth of the few-layer TMD materials directly in the CVD chamber environment.
View Article and Find Full Text PDF