Optical pooled screening offers a broader-scale alternative to enrichment-based perturbation screening, using fluorescence microscopy to correlate phenotypes and perturbations across single cells. Previous methods work well in large, transcriptionally active cell lines, because they rely on cytosolic detection of endogenously expressed barcoded transcripts; however, they are limited by reliable cell segmentation, cytosol size, transcriptional activity and cell density. Nuclear In-Situ Sequencing (NIS-Seq) expands this technology by creating bright sequencing signals directly from nuclear genomic DNA to screen nucleated cells at high density and high library complexity.
View Article and Find Full Text PDFIntroduction: Thiamine-responsive megaloblastic anemia syndrome (TRMA) is a rare autosomal recessive disease with a homozygous or compound-heterozygous mutation in the SLC19A2 gene characterized by megaloblastic anemia, diabetes mellitus (DM), and sensorineural hearing loss with onset in childhood. Folic acid and vitamin B12 in serum are normal with dysplastic erythropoiesis in the bone marrow often mimicking myelodysplastic neoplasms (MDS) as a potential differential diagnosis. Thiamine substitution leads to normalization of anemia, without effects on hearing loss or DM.
View Article and Find Full Text PDF