Publications by authors named "M Jefimow"

Animals initiate physiological mechanisms to re-establish homeostasis following environmental stress. To understand how bird physiology responds to abiotic stress, we quantified changes in haematological markers of chronic stress response and body condition of male zebra finches (Taeniopygia guttata) acclimated for 18 weeks to hot and cool temperatures (daytime temperature: 40°C and 23°C) with water available ad libitum or restricted during half of the active phase. Ambient temperature induced greater chronic stress than restricted water availability.

View Article and Find Full Text PDF

Shallow coastal aquifers are vulnerable hydrosystems controlled by many factors, related to climate, seawater-freshwater interactions and human activity. Given on-going climate change, sea level rise and increasing human impact, it is especially true for groundwater resources situated in sandbars. We developed numerical models of unsaturated zone water flow for two sandbars in northern Poland: the Vistula Spit and the Hel Spit using HYDRUS-1D.

View Article and Find Full Text PDF

Each phenotype is a product of the interaction of the genes and the environment. Although winter phenotype in seasonal mammals is heritable, its development may be modified by external conditions. In today's world, global climate change and increasing frequency of unpredictable weather events may affect the dynamic equilibrium between phenotypes.

View Article and Find Full Text PDF

Energy conservation is a clear function of torpor. Although many studies imply that torpor is also a water-saving strategy, the experimental evidence linking water availability with torpor is inconclusive. We tested the relative roles of water and energy shortages in driving torpor, using the Siberian hamster Phodopus sungorus as a model species.

View Article and Find Full Text PDF

Nonresponding Siberian hamsters (Phodopus sungorus) do not develop the winter phenotype of white fur, low body mass (Mb) and spontaneous torpor in response to short photoperiod. However, their thermoregulatory response to fasting remains unknown. We measured body temperature and Mb of 12 nonresponders acclimated to short photoperiod and then to cold and fasted four times for 24 h.

View Article and Find Full Text PDF