Publications by authors named "M Jasionowski"

Ab-initio electronic structure methods are used to explore potential energy profiles pertinent to the fragmentations of gas-phase radicals thought to be formed in the new negative-ion mode EDD mass spectroscopic studies of peptides. Barriers to fragmentation as well as the associated overall energy differences are computed for the observed Calpha-C backbone bond cleavage as well as for side-chain loss for a variety of side chains (valine, arginine, glutamic acid, and tyrosine). It is found that Calpha-C bond cleavage is favored over side-chain loss, although loss of a tyrosine side chain may compete with Calpha-C cleavage because the tyrosine radical formed can delocalize its unpaired electron over its aromatic ring.

View Article and Find Full Text PDF

Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained by the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site.

View Article and Find Full Text PDF

Recently, tissue engineering approaches using injectable, in situ gel forming systems have been reported. In this review, the gelation processes and several injectable systems that exhibit in situ gel formation at physiological conditions are discussed. Applications of selected injectable systems (alginate, chitosan, hyaluronan, polyethylene oxide/polypropylene oxide) in tissue engineering are also described.

View Article and Find Full Text PDF

Results are reported from potentiometric and spectroscopic (UV-Vis, CD, and ESR) studies of the protonation constants and Cu2+ complex stability constants of pituitary adenylate cyclase activating polypeptide fragments (HSDGI-NH2, TDSYS-NH2, RKQMAVKKYLAAVL-NH2). With HSDGI-NH2, the formation of a dimeric complex Cu2H-2L2 was found in the pH range 5-8, in which the coordination of copper(II) is glycylglycine-like, while the fourth coordination site is occupied by the imidazole N3 nitrogen atom, forming a bridge between two copper(II) ions. The formation of dimeric species does not prevent the deprotonation and coordination of the amide nitrogen, and in pH above 8 the CuH-2L complex is formed.

View Article and Find Full Text PDF