Publications by authors named "M Jasek"

Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p).

View Article and Find Full Text PDF

The fact that CD6, along with its ligand - ALCAM, plays a role in regulating T cell activation makes the genes encoding these molecules promising candidates for research in T cell-mediated diseases such as psoriasis vulgaris (PsV). Our study aimed to determine whether CD6 (rs17824933C>G, rs11230563C>T and rs12360861G>A) and ALCAM (rs6437585C>T, rs11559013G>A) polymorphisms may affect psoriasis susceptibility and severity (assessed by Psoriasis Area and Severity Index (PASI)). Moreover, the presence of HLA-C*06:02, the strongest psoriasis risk factor in the Caucasian population, was also investigated.

View Article and Find Full Text PDF

Background: ERAP1 is a major aminopeptidase that serves as an editor of the peptide repertoire by trimming N-terminal residues of antigenic peptides, creating a pool of peptides with the optimal length for MHC-I binding. As an important component of the antigen processing and presenting machinery - APM, ERAP1 is frequently down-regulated in many cancers. Since ERAP1 expression has not yet been thoroughly investigated in non-small cell lung cancer (NSCLC), we decided to analyze ERAP1 mRNA levels in tissues collected from NSCLC patients.

View Article and Find Full Text PDF

Background: To investigate the association between single nucleotide polymorphisms (SNPs) of PDCD1, CD274, and HAVCR2 genes with the risk and outcomes of non-small cell lung cancer (NSCLC) subtypes: squamous cell lung cancer (LUSC) and lung adenocarcinoma (LUAD).

Methods: TaqMan SNP genotyping assays or polymerase chain reaction-restriction fragment length polymorphism methods were used to determine genotypes of: PDCD1: rs36084323, rs7421861, rs11568821, rs2227981, rs10204525; CD274: rs822335, rs10815225, rs17718883, rs2297136, rs4742098, rs4143815; HAVCR2: rs10057302, rs1036199. Among 383 NSCLC patients, 112 were diagnosed with LUAD and 116 with LUSC.

View Article and Find Full Text PDF

Introduction: Lung cancer is the predominant cause of death among cancer patients and non-small cell lung cancer (NSCLC) is the most common type. Cigarette smoking is the prevailing risk factor for NSCLC, nevertheless, this cancer is also diagnosed in never-smokers. B and T lymphocyte attenuator (BTLA) belongs to immunological checkpoints which are key regulatory molecules of the immune response.

View Article and Find Full Text PDF