Publications by authors named "M Jarek"

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

Cadmium-free and NIR fluorescent QDs are promising candidates for bio-application. Thus, we present the synthesis of ternary ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) where the molar variation of Cu/Zn of the precursors was used to tune the optical and structural properties. QDs with Cu/Zn molar ratio of 2/1 passivated with ZnS exhibited the best optical properties.

View Article and Find Full Text PDF

The isothermal crystallization process of felodipine has been investigated using the time-domain Nuclear Magnetic Resonance (NMR) method for amorphous bulk and ground samples. The obtained induction and crystallization times were then used to construct the time-temperature-transformation (TTT) diagram, both above and below the glass transition temperature (T). The Nose temperature was found equal to 363 K.

View Article and Find Full Text PDF

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes.

View Article and Find Full Text PDF

Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles.

View Article and Find Full Text PDF