Publications by authors named "M Janmaleki"

Physiologically relevant intracranial aneurysm (IA) models are crucially required to facilitate testing treatment options for IA. Herein, we report the development of a new in vitro tissue-engineered platform, which recapitulates the microenvironment, structure, and cellular complexity of native human IA. A new modified liquid-assisted injection molding technique was developed to fabricate a three-dimensional hollow IA model with clinically relevant IA dimensions within a mechanically tuned Gelatin Methacryloyl (GelMA) hydrogel.

View Article and Find Full Text PDF

Investigating axonal myelination by Schwann cells (SCs) is crucial for understanding mechanisms underlying demyelination and remyelination, which may help gain insights into incurable disorders like neurodegenerative diseases. In this study, a gelatin-based hydrogel, gelatin methacryloyl (GelMA), was optimized to achieve the biocompatibility, porosity, mechanical stability, and degradability needed to provide high cell viability for dorsal root ganglia (DRG) neurons and SCs, and to enable their long-term coculture needed for myelination studies. The results of cell viability, neurite elongation, SC function and maturation, SC-axon interaction, and myelination were compared with two other commonly used substrates, namely collagen and Poly-d Lysine (PDL).

View Article and Find Full Text PDF

Additive manufacturing has shown promising results in reconstructing three-dimensional (3D) living tissues for various applications, including tissue engineering, regenerative medicine, drug discovery, and high-throughput drug screening. In extrusion-based bioprinters, stable formation of filaments and high-fidelity deposition of bioinks are the primary challenges in fabrication of physiologically relevant tissue constructs. Among various bioinks, gelatin methacryloyl (GelMA) is known as a photocurable and physicochemically tunable hydrogel with a demonstrated biocompatibility and tunable biodegradation properties.

View Article and Find Full Text PDF

This study demonstrates the effect of substrate's geometrical cues on viability and the efficacy of an anti-cancer drug, doxorubicin (DOX), on breast cancer cells. It is hypothesized that the surface topographical properties can mediate the cellular drug intake. Pseudo-three dimensional (3D) platforms were fabricated using imprinting technique from polydimethylsiloxane (PDMS) and gelatin methacryloyl (GelMA) hydrogel to recapitulate topography of cells' membranes.

View Article and Find Full Text PDF

Oral tablets with tunable release profiles have emerged to enhance the effectiveness of therapies in different clinical conditions. Although the concept of tablets with adjustable release profiles has been studied before, the lack of a fast and scalable production technique has limited their widespread application. In this study, a scalable fabrication method was developed to manufacture controlled-release polyanhydride tablets.

View Article and Find Full Text PDF