Publications by authors named "M Jane Swartz"

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

Background: During infant aortic arch reconstruction, traditional electroencephalography (EEG) provides only qualitative data limiting neuromonitoring efficacy. Interhemispheric differences in the alpha:delta ratio (ADR) and suppression ratio (SR) measured using quantitative EEG generate numerical trends that may suggest cerebral ischemia. We hypothesized that the ADR and SR during cardiopulmonary bypass (CPB) would correlate with hemodynamics, and that ADR and SR interhemispheric differences would precede neurological injury from infants requiring aortic arch reconstruction.

View Article and Find Full Text PDF

It is commonly reported that rare variants may be more functionally related to complex diseases than common variants. However, individual rare variant association tests remain challenging due to low minor allele frequency in the available samples. This paper proposes an expectation maximization variable selection (EMVS) method to simultaneously detect common and rare variants at the individual variant level using family trio data.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.

View Article and Find Full Text PDF