Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFPurpose: Although PD-(L)1 inhibitors have shown efficacy in advanced/metastatic non-small cell lung cancer (NSCLC), many patients do not respond to this treatment and more effective combinations with acceptable toxicities are needed. To assess the potential benefit of combining localized innate immune stimulation with checkpoint blockade, the TLR9 agonist DV281 was combined with nivolumab in a phase Ib study.
Patients And Methods: Patients after one or two prior lines of systemic therapy were enrolled in a dose-escalation study with a 3+3 design.
The synthetic oligonucleotide SD-101 is a potent and specific agonist for toll-like receptor 9. Intratumoral injection of SD-101 induces significant anti-tumor immunity in preclinical and clinical studies, especially when combined with PD-1 blockade. To build upon this strategy, we studied the enhancement of SD-101 activities by combination with low-dose cyclophosphamide, a well-characterized agent with potentially complementary activities.
View Article and Find Full Text PDFDespite an improving therapeutic landscape, significant challenges remain in treating the majority of patients with advanced ovarian or renal cancer. We identified the cell-cell adhesion molecule cadherin-6 () as a lineage gene having significant differential expression in ovarian and kidney cancers. HKT288 is an optimized CDH6-targeting DM4-based antibody-drug conjugate (ADC) developed for the treatment of these diseases.
View Article and Find Full Text PDFRegenerating islet-derived family member, 4 (Reg IV) is a secreted protein and member of the C-type lectin superfamily. Expression analyses have characterized Reg IV as a prognostic marker for certain cancers; however, the functional role of Reg IV in cancer, including downstream signaling, has only begun to be elucidated. To investigate the biological role of Reg IV in cancer, phosphorylation events were studied in cancer cell lines in the context of either Reg IV stimulation (HCT116 cells) or knockdown of endogenous Reg IV (PC3 and KM12 cells).
View Article and Find Full Text PDF