Catalysts based on molybdenum carbide or nitride nanoparticles (2-5 nm) supported on titania were prepared by wet impregnation followed by a thermal treatment under alkane (methane or ethane)/hydrogen or nitrogen/hydrogen mixture, respectively. The samples were characterized by elemental analysis, volumetric adsorption of nitrogen, X-ray diffraction, and aberration-corrected transmission electron microscopy. They were evaluated for the hydrogenation of CO in the 2-3 MPa and 200-300°C ranges using a gas-phase flow fixed bed reactor.
View Article and Find Full Text PDFA series of new Pd-PEPPSI complexes containing imidazolylidene ligands with a mixed 9-alkyl-9-fluorenyl/aryl N,N'-substitution pattern have been synthesised. Single crystal X-ray diffraction studies were carried out for four complexes, which revealed that the N-heterocyclic carbene ligands display a semi-open, unsymmetrical space occupancy about the metal. Despite their particular unsymmetrical shape, the new complexes were found to perform as well in Suzuki-Miyaura cross coupling (dioxane, 80 °C) as previously reported, highly active analogues bearing two sterically protecting 9-alkylfluorenyl substituents.
View Article and Find Full Text PDFA quartz-enhanced photoacoustic absorption spectroscopy (QEPAS)-based gas sensor was developed for methane (CH₄) and nitrous-oxide (N₂O) detection. The QEPAS-based sensor was installed in a mobile laboratory operated by Aerodyne Research, Inc. to perform atmospheric CH₄ and N₂O detection around two urban waste-disposal sites located in the northeastern part of the Greater Houston area, during DISCOVER-AQ, a NASA Earth Venture during September 2013.
View Article and Find Full Text PDFA methane (CH4) and nitrous oxide (N2O) sensor based on a sensitive, selective and well established technique of quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for environmental and biomedical measurements. A thermoelectrically cooled (TEC) distributed feedback quantum cascade laser (DFB-QCL), capable of continuous wave (CW) mode hop free emission in the 7.83 μm wavelength range, was used as an excitation source.
View Article and Find Full Text PDFA system for gas sensing based on the quartz-enhanced photoacoustic spectroscopy technique has been developed. It makes use of a quantum well distributed feedback (DFB) laser diode emitting at 3.38 μm.
View Article and Find Full Text PDF