Publications by authors named "M Jahjah"

Catalysts based on molybdenum carbide or nitride nanoparticles (2-5 nm) supported on titania were prepared by wet impregnation followed by a thermal treatment under alkane (methane or ethane)/hydrogen or nitrogen/hydrogen mixture, respectively. The samples were characterized by elemental analysis, volumetric adsorption of nitrogen, X-ray diffraction, and aberration-corrected transmission electron microscopy. They were evaluated for the hydrogenation of CO in the 2-3 MPa and 200-300°C ranges using a gas-phase flow fixed bed reactor.

View Article and Find Full Text PDF

A series of new Pd-PEPPSI complexes containing imidazolylidene ligands with a mixed 9-alkyl-9-fluorenyl/aryl N,N'-substitution pattern have been synthesised. Single crystal X-ray diffraction studies were carried out for four complexes, which revealed that the N-heterocyclic carbene ligands display a semi-open, unsymmetrical space occupancy about the metal. Despite their particular unsymmetrical shape, the new complexes were found to perform as well in Suzuki-Miyaura cross coupling (dioxane, 80 °C) as previously reported, highly active analogues bearing two sterically protecting 9-alkylfluorenyl substituents.

View Article and Find Full Text PDF

A quartz-enhanced photoacoustic absorption spectroscopy (QEPAS)-based gas sensor was developed for methane (CH₄) and nitrous-oxide (N₂O) detection. The QEPAS-based sensor was installed in a mobile laboratory operated by Aerodyne Research, Inc. to perform atmospheric CH₄ and N₂O detection around two urban waste-disposal sites located in the northeastern part of the Greater Houston area, during DISCOVER-AQ, a NASA Earth Venture during September 2013.

View Article and Find Full Text PDF

A methane (CH4) and nitrous oxide (N2O) sensor based on a sensitive, selective and well established technique of quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for environmental and biomedical measurements. A thermoelectrically cooled (TEC) distributed feedback quantum cascade laser (DFB-QCL), capable of continuous wave (CW) mode hop free emission in the 7.83 μm wavelength range, was used as an excitation source.

View Article and Find Full Text PDF

A system for gas sensing based on the quartz-enhanced photoacoustic spectroscopy technique has been developed. It makes use of a quantum well distributed feedback (DFB) laser diode emitting at 3.38 μm.

View Article and Find Full Text PDF