The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue.
View Article and Find Full Text PDFCardiac thyroid-hormone signaling is a critical determinant of cellular metabolism and function in health and disease. A local hypothyroid condition within the failing heart in rodents has been associated with the re-expression of the fetally expressed thyroid-hormone-inactivating enzyme deiodinase type III (Dio3). While this enzyme emerges as a common denominator in the development of heart failure, the mechanism underlying its regulation remains largely unclear.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2014
Cardiomyocyte size in the healthy heart is in part determined by the level of circulating thyroid hormone (TH). Higher levels of TH induce ventricular hypertrophy, primarily in response to an increase in hemodynamic load. Normal cardiac function is maintained in this form of hypertrophy, whereas progressive contractile dysfunction is a hallmark of pathological hypertrophy.
View Article and Find Full Text PDFThe adult heart has almost completely lost the proliferative potential of the fetal heart. Instead, loss of cardiomyocytes due to myocardial infarction (MI) leads to a limited, and often insufficient, hypertrophic response of cardiomyocytes in the spared myocardium. This response is still characterized by a partial reexpression of the fetal gene program.
View Article and Find Full Text PDFSimilarities in cardiac gene expression in hypothyroidism and left ventricular (LV) pathological remodeling after myocardial infarction (MI) suggest a role for impaired cardiac thyroid hormone (TH) signaling in the development of heart failure. Increased ventricular activity of the TH-degrading enzyme type 3 deiodinase (D3) is recognized as a potential cause. In the present study, we investigated the cardiac expression and activity of D3 over an 8-wk period after MI in C57Bl/6J mice.
View Article and Find Full Text PDF