Background: Hypertension or elevated blood pressure (BP) is a worldwide clinical challenge and the leading primary risk factor for kidney dysfunctions, heart failure, and cerebrovascular disease. The kidney is a central regulator of BP by maintaining sodium-water balance. Multiple genome-wide association studies revealed that BP is a heritable quantitative trait, modulated by several genetic, epigenetic, and environmental factors.
View Article and Find Full Text PDFSeveral microRNAs (miRNAs) strongly influence blood pressure and the development of hypertension by modulating vascular, renal, and other physiological mechanisms. In addition, miRNAs may contribute to the genetic regulation of blood pressure. Future research should focus on investigating select miRNAs with potent physiological effects, understanding cellular context-dependent mechanisms conferring specificity to miRNA action, and integrating miRNAs as powerful modulators into the molecular system that underlies the regulation of blood pressure and the development of hypertension.
View Article and Find Full Text PDFArterioles are small blood vessels located just upstream of capillaries in nearly all tissues. The constriction and dilation of arterioles regulate tissue perfusion and are primary determinants of systemic blood pressure (BP). Abnormalities in arterioles are central to the development of major diseases such as hypertension, stroke, and microvascular complications of diabetes.
View Article and Find Full Text PDFEndothelial dysfunction represents a measurable and early manifestation of vascular disease. Emerging evidence suggests cardiovascular risk remains elevated after COVID-19 infection for at least 12 months, regardless of cardiovascular disease status prior to infection. We review the relationship between the severity of endothelial dysfunction and the severity of acute COVID-19 illness, the degree of impairment following recovery in both those with and without postacute sequalae SARS-CoV-2 infection, and current therapeutic efforts targeting endothelial function in patients following COVID-19 infection.
View Article and Find Full Text PDFThe circulating milieu, bioactive molecules in the bloodstream, is altered with aging and interfaces constantly with the vasculature. This anatomic juxtaposition suggests that circulating factors may actively modulate arterial function. Here, we developed a novel, translational experimental model that allows for direct interrogation of the influence of the circulating milieu on age-related arterial dysfunction (aortic stiffening and endothelial dysfunction).
View Article and Find Full Text PDF