Brain metallothionein (MT) protein and mRNA levels were determined in the fetal rat following in utero (gestational days 7-21) exposure to elemental mercury vapor (Hg0; 300 microg Hg/m3; 4 h/day). Total RNA was probed on Northern blots with [alpha-32P]dCTP-labeled synthetic cDNA probes specific for rat MT isoform mRNAs. The probes for MT-I and MT-II mRNA hybridized to a single band of approximately 550 and 450 nucleotides, respectively.
View Article and Find Full Text PDFNeonatal uptake of mercury (Hg) from milk was examined in a pregnant sheep model, where radioactive mercury (Hg203)/silver tooth fillings (amalgam) were newly placed. A crossover experimental design was used in which lactating ewes nursed foster lambs. In a parallel study, the relationship between dental history and breast milk concentration of Hg was also examined in 33 lactating women.
View Article and Find Full Text PDFHg2+ interacts with brain tubulin and disassembles microtubules that maintain neurite structure. Since it is well known that Hg vapor (Hg0) is continuously released from "silver" amalgam tooth fillings and is absorbed into brain, rats were exposed to Hg0 4h/day for 0, 2, 7, 14 and 28 d at 250 or 300 micrograms Hg/m3 air, concentrations present in mouth air of some humans with many amalgam fillings. Average rat brain Hg concentrations increased significantly (11-47 fold) with duration of Hg0 exposure.
View Article and Find Full Text PDF