Publications by authors named "M J Sailor"

Article Synopsis
  • A novel enzyme-nanoparticle construct is created using phosphotriesterase (PTE) immobilized in a partially oxidized mesoporous silicon nanoparticle for breaking down nerve agents.
  • The enzyme@nanoparticle setup demonstrates twice the efficiency in hydrolyzing a model compound (DMNP) compared to the free enzyme, with pore hydration being crucial for optimal activity.
  • This construct maintains its activity over multiple cycles, is more stable against degradation, and effectively detoxifies the nerve agent VX while protecting AChE function in human blood tests, making it a promising tool for chemical decontamination.
View Article and Find Full Text PDF
Article Synopsis
  • A 69-year-old woman with no major health issues went to the emergency room due to confusion and worsening cold symptoms over the past 10 days.
  • After a visit to urgent care for a cough and neck pain, further tests in the ER suggested she might have sepsis or meningitis.
  • A CT scan showed brain issues related to a sinus infection, and tests confirmed she had a widespread Streptococcus pneumoniae infection, leading to serious strokes that could cause major disability.
View Article and Find Full Text PDF

The sensitivity and responsiveness of living cells to environmental changes are enabled by dynamic protein structures, inspiring efforts to construct artificial supramolecular protein assemblies. However, despite their sophisticated structures, designed protein assemblies have yet to be incorporated into macroscale devices for real-life applications. We report a 2D crystalline protein assembly of L-rhamnulose-1-phosphate aldolase (RhuA) that selectively blocks or passes molecular species when exposed to a chemical trigger.

View Article and Find Full Text PDF

Nanomedicine is a growing field where development of novel organic and inorganic materials is essential to meet the complex requirements for drug delivery. This includes biocompatibility, suitability for surface modifications, biodegradability, and stability sufficient to carry a drug payload through various tissues for the desired timespan. Porous silicon nanoparticles (pSi NP) are shown to have several beneficial traits in drug delivery in addition to a porous structure to maximize drug loading.

View Article and Find Full Text PDF

Intranasal delivery is the most preferred route of drug administration for treatment of a range of nasal conditions including chronic rhinosinusitis (CRS), caused by an infection and inflammation of the nasal mucosa. However, localised delivery of lipophilic drugs for persistent nasal inflammation is a challenge especially with traditional topical nasal sprays. In this study, a composite thermoresponsive hydrogel is developed and tuned to obtain desired rheological and physiochemical properties suitable for intranasal administration of lipophilic drugs.

View Article and Find Full Text PDF