The prevention of coffee fraud through the use of digital and intelligence-based technologies is an analytical challenge because depending on the adulterant, visual inspection is unreliable in roasted and ground coffee due to the similarity in color and texture of the materials used. In this work, a 3D-printed apparatus for smartphone image acquisiton is proposed. The digital images are used to authenticate the geographical origin of indigenous canephora coffees produced at Amazon region, Brazil, against canephora coffees from Espírito Santo, Brazil, and to capture the adulteration of indigenous samples.
View Article and Find Full Text PDFBackground: Globally, acral melanoma (AM) is underrepresented in most clinical trials, being predominant in Caucasian populations. Latin America is a niche that needs to be explored. Therefore, this study aimed to determine the clinical features, response patterns, outcomes and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) status in Peruvian patients with advanced AM.
View Article and Find Full Text PDFFilariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae.
View Article and Find Full Text PDFAnalysis of bone marrow aspirates (BMAs) is an essential step in the diagnosis of hematological disorders. This analysis is usually performed based on a visual examination of samples under a conventional optical microscope, which involves a labor-intensive process, limited by clinical experience and subject to high observer variability. In this work, we present a comprehensive digital microscopy system that enables BMA analysis for cell type counting and differentiation in an efficient and objective manner.
View Article and Find Full Text PDFJ Bronchology Interv Pulmonol
April 2024
Background: Electromagnetic navigation bronchoscopy (ENB) utilizes three-dimensional reconstructions based on computed tomography to guide the biopsy of pulmonary lesions. Various limitations have been described; however, supporting data have been limited by small sample sizes.
Methods: Cases of ENB for evaluation of a pulmonary lesion at a single institution during a 1-year span were reviewed for demographics, lesion location, procedural details, and final tissue diagnosis.