Staphylococcus aureus secretes several virulence factors interfering with host-cell functions. Staphylococcal superantigen-like (SSL) proteins are a family of 11 exotoxins with structural homology to superantigens but with generally unknown functions. Recently, we described that chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS(31-121)), a potent inhibitor of C5a-induced responses, is structurally homologous to the C-terminal domain of SSL5.
View Article and Find Full Text PDFThe chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is a 121 residue excreted virulence factor. It acts by binding the C5a- (C5aR) and formylated peptide receptor (FPR) and thereby blocks specific phagocyte responses. Here, we report the solution structure of a CHIPS fragment consisting of residues 31-121 (CHIPS31-121).
View Article and Find Full Text PDFChemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is excreted by the majority of S. aureus strains and is a potent inhibitor of C5a- and formylated peptide-mediated chemotaxis of neutrophils and monocytes. Recently, we reported that CHIPS binds to the C5a receptor (C5aR) and the formylated peptide receptor, thereby blocking activation by C5a and formylated peptides, respectively.
View Article and Find Full Text PDFStaphylococcus aureus excretes a factor that specifically and simultaneously acts on the C5aR and the formylated peptide receptor (FPR). This chemotaxis inhibitory protein of S. aureus (CHIPS) blocks C5a- and fMLP-induced phagocyte activation and chemotaxis.
View Article and Find Full Text PDFChemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is an exoprotein produced by several strains of S. aureus, and a potent inhibitor of neutrophil and monocyte chemotaxis toward C5a and formylated peptides like fMLP. These chemoattractants act on their target cells by binding and activating the C5aR and formylated peptide receptor (FPR), respectively.
View Article and Find Full Text PDF